Add planes

This commit is contained in:
maddiebaka
2023-06-12 19:51:53 -04:00
parent f909b12962
commit 81403f1633

View File

@@ -10,7 +10,7 @@ use nalgebra::*;
use bmp::Image;
use bmp::Pixel;
struct Ray {
pub struct Ray {
pos: Vec3<f64>,
dir: Vec3<f64>
}
@@ -40,12 +40,46 @@ impl LightSrc {
intensity: intensity
}
}
fn distance(&self, hit_point: Vec3<f64>) -> f64 {
let difference = self.pos - hit_point;
difference.norm()
}
}
enum Element {
Sphere(Sphere),
Plane(Plane),
}
impl Element {
fn pos(&self) -> Vec3<f64> {
match *self {
Element::Sphere(ref s) => s.pos,
Element::Plane(ref p) => p.pos,
}
}
fn color(&self) -> &Color {
match *self {
Element::Sphere(ref s) => &s.material.coloration,
Element::Plane(ref p) => &p.color,
}
}
fn normal(&self, pos: Vec3<f64>) -> Vec3<f64> {
match *self {
Element::Sphere(ref s) => pos - s.pos,
Element::Plane(ref p) => -p.normal,
}
}
}
struct OrthoCamera {
pos: Vec3<f64>,
plane: bmp::Image,
spheres: Vec<Sphere>,
output_img: bmp::Image,
elements: Vec<Element>,
//spheres: Vec<Sphere>,
light: LightSrc,
shadow_bias: f64,
@@ -54,8 +88,8 @@ struct OrthoCamera {
impl OrthoCamera {
fn trace(&self, ray: &Ray) -> Option<Intersection> {
self.spheres.iter()
.filter_map(|s| s.intersection(ray).map(|d| Intersection::new(d, s) ))
self.elements.iter()
.filter_map(|s| s.intersect(ray).map(|d| Intersection::new(d, s) ))
.min_by(|i1, i2| i1.distance.partial_cmp(&i2.distance).unwrap())
}
}
@@ -98,16 +132,17 @@ impl Color {
}
}
struct Sphere {
pub struct Sphere {
pos: Vec3<f64>,
radius: f64,
material: Material,
}
impl Sphere {
impl Intersectable for Sphere {
// Implemented from
// http://kylehalladay.com/blog/tutorial/math/2013/12/24/Ray-Sphere-Intersection.html
fn intersection(&self, ray: &Ray) -> Option<f64> {
fn intersect(&self, ray: &Ray) -> Option<f64> {
let l = self.pos - ray.pos;
let adj = l.dot(&ray.dir);
let d2 = l.dot(&l) - (adj * adj);
@@ -128,15 +163,42 @@ impl Sphere {
let distance = if t0 < t1 { t0 } else { t1 };
Some(distance)
}
}
pub struct Plane {
pos: Vec3<f64>,
normal: Vec3<f64>,
color: Color,
//material: Material,
}
pub trait Intersectable {
fn intersect(&self, ray: &Ray) -> Option<f64>;
}
impl Intersectable for Plane {
fn intersect(&self, ray: &Ray) -> Option<f64> {
let normal = &self.normal;
let denom = normal.dot(&ray.dir);
if denom > 1e-6 {
let v = self.pos - ray.pos;
let distance = v.dot(&normal) / denom;
if distance >= 0.0 {
return Some(distance);
}
}
None
}
}
struct Intersection<'a> {
distance: f64,
object: &'a Sphere
object: &'a Element
}
impl<'a> Intersection<'a> {
fn new<'b>(distance: f64, object: &'b Sphere) -> Intersection<'b> {
fn new<'b>(distance: f64, object: &'b Element) -> Intersection<'b> {
Intersection {
distance: distance,
object: & object
@@ -144,6 +206,15 @@ impl<'a> Intersection<'a> {
}
}
impl Intersectable for Element {
fn intersect(&self, ray: &Ray) -> Option<f64> {
match *self {
Element::Sphere(ref s) => s.intersect(ray),
Element::Plane(ref p) => p.intersect(ray),
}
}
}
//fn get_color(camera: &OrthoCamera, ray: &Ray, intersection: &Intersection) -> Color {
// let hit_point = ray.at(intersection.distance);
@@ -161,9 +232,9 @@ impl<'a> Intersection<'a> {
fn main() {
let mut camera = OrthoCamera {
pos: Vec3::new(0.0, 0.0, 0.0),
plane: Image::new(256,256),
spheres: Vec::new(),
light: LightSrc::new(Vec3::new(125.0, -100.0, 100.0), 20.0),
output_img: Image::new(2560,2560),
elements: Vec::new(),
light: LightSrc::new(Vec3::new(200.0, 200.0, 300.0), 5.0),
shadow_bias: 1e-3,
max_recursion_depth: 5
};
@@ -173,10 +244,10 @@ fn main() {
// camera.spheres.push(Sphere::new(Vec3::new(0.0, 0.0, 100.0), 10.0));
for i in 0..15 {
let mut rng = rand::thread_rng();
let x: f64 = rng.gen::<f64>() * 250.0;
let y: f64 = rng.gen::<f64>() * 250.0;
let z: f64 = rng.gen::<f64>() * 250.0;
let radius: f64 = rng.gen::<f64>() * 40.0;
let x: f64 = rng.gen::<f64>() * 250.0 * 10.0;
let y: f64 = rng.gen::<f64>() * 250.0 * 10.0;
let z: f64 = rng.gen::<f64>() * 250.0 * 10.0;
let radius: f64 = rng.gen::<f64>() * 40.0 * 10.0;
let red: f64 = rng.gen::<f64>() * 100.0;
let green: f64 = rng.gen::<f64>() * 100.0;
let blue: f64 = rng.gen::<f64>() * 100.0;
@@ -185,42 +256,84 @@ fn main() {
radius: radius,
material: Material::new(Color::new(red, green, blue), 2.0, SurfaceType::Reflective { reflectivity: 1.0 })
};
camera.spheres.push(sphere);
camera.elements.push(Element::Sphere(sphere));
//camera.spheres.push(Sphere::new(Vec3::new(x, y, 100.0), radius));
}
for (x, y) in camera.plane.coordinates() {
camera.plane.set_pixel(x, y, px!(20, 20, 20));
let back_plane = Plane {
//pos: Vec3::new(0.0, 0.0, 100.0),
pos: Vec3::new(0.0, 0.0, 1500.0),
color: Color::new(20.0, 20.0, 255.0),
normal: Vec3::new(0.0, 0.0, 1.0),
};
camera.elements.push(Element::Plane(back_plane));
let bottom_plane = Plane {
pos: Vec3::new(2500.0, 0.0, 1500.0),
color: Color::new(20.0, 20.0, 80.0),
normal: Vec3::new(0.0, 0.4, 1.0),
};
camera.elements.push(Element::Plane(bottom_plane));
let center_sphere = Sphere {
pos: Vec3::new(1280.0, 1280.0, 500.0),
radius: 300.0,
material: Material::new(Color::new(255.0, 20.0, 20.0), 2.0, SurfaceType::Reflective { reflectivity: 1.0 })
};
camera.elements.push(Element::Sphere(center_sphere));
//let sky_sphere = Sphere {
// pos: Vec3::new(1280.0, 1280.0, 0.0),
// radius: 50000.0,
// material: Material::new(Color::new(255.0, 20.0, 20.0), 2.0, SurfaceType::Reflective { reflectivity: 1.0 })
//};
//camera.spheres.push(sky_sphere);
println!("Raytracing ...");
for (x, y) in camera.output_img.coordinates() {
camera.output_img.set_pixel(x, y, px!(20, 20, 20));
let ray = Ray::new(Vec3::new(x as f64, y as f64, camera.pos.z as f64), Vec3::new(0.0, 0.0, 1.0));
let result = camera.trace(&ray);
match result {
Some(intersection) => {
let hit_point = ray.at(intersection.distance);
let normal = hit_point - intersection.object.pos;
let light_dir = hit_point - camera.light.pos;
let light_color = &intersection.object.material.coloration;
let object_pos = intersection.object.pos();
//let normal = hit_point - object_pos;
let normal = intersection.object.normal(hit_point);
let light_dir = camera.light.pos - hit_point; //hit_point - camera.light.pos;
let light_color = &intersection.object.color(); //&intersection.object.material.coloration;
let shadow_ray = Ray {
pos: hit_point + (normal.normalize()),
dir: -light_dir.normalize()
dir: light_dir.normalize()
};
println!("{} {}", shadow_ray.pos, shadow_ray.dir);
//println!("{} {}", shadow_ray.pos, shadow_ray.dir);
let in_light = camera.trace(&shadow_ray).is_none();
// TODO: Get shadow calculations working better
// Working code below
let shadow_intersection = camera.trace(&shadow_ray);
//println!("{} < {}", camera.light.distance(hit_point), shadow_intersection.as_ref().unwrap().distance);
let in_light = shadow_intersection.is_none() || shadow_intersection.unwrap().distance > camera.light.distance(hit_point);
//let in_light = true;
let light_intensity = if in_light { camera.light.intensity } else { 0.0 };
let light_power = (normal.normalize().dot(&-light_dir.normalize()) as f64).max(0.0) * light_intensity;
//let light_intensity = camera.light.intensity;
let light_power = (normal.normalize().dot(&light_dir.normalize()) as f64).max(0.0) * light_intensity;
let light_reflected = 2.0 / std::f64::consts::PI;
let red = light_color.red * light_power * light_reflected;
let green = light_color.green * light_power * light_reflected;
let blue = light_color.blue * light_power * light_reflected;
let red = light_color.red * light_power;// * light_reflected;
let green = light_color.green * light_power;// * light_reflected;
let blue = light_color.blue * light_power;// * light_reflected;
camera.plane.set_pixel(x, y, px!(red, green, blue))
//let red = light_color.red;
//let green = light_color.green;
//let blue = light_color.blue;
camera.output_img.set_pixel(x, y, px!(red, green, blue))
},
None => { }
}
}
let _ = camera.plane.save("img.bmp");
let _ = camera.output_img.save("img.bmp");
}